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MCPBA Oxidation of r-Allylpalladium Complexes. =-
Allylpalladium complex (0.3 mmol) was placed in the reaction
vessel under a nitrogen atmosphere. Pyridine (1.5 mmol) in 2
mL of dichloromethane was introduced with stirring at 0 °C.
MCPBA (0.36 mmol) in dichloromethane (3 mL) was added
dropwise to the solution. The resulting mixture was stirred at
0 °C for 24 h, allowed to warm to ambient temperature, washed
with Na,SO; solution, NaHCO; solution, water, and brine, and
dried on anhydrous MgSO,. The solvent-evaporated residue was
analyzed by GLC. Except for the cases of 1a and 6a, allylic
alcohols were not detected and the isomers of allylic m-chloro-
benzoates were obtained.

2-[(3-Chlorobenzoyl)oxy]-1-methylenecyclohexane (2¢):
IR (film) 1710, 1430, 1300, 1270, 1122, 1068, 896, 750 cm™; NMR
(CDCly) 6 1.5-2.4 (m, 8 H, CH,), 4.81 (s, 1 H,=CH), 4.89 (s, 1
H, =CH), 5.4-5.7 (m, 1 H, CHO), 7.2-8.1 (m, 4 H, phenyl).

1-[[(3-Chlorobenzoyl)oxy]lmethyl]cyclohexene (2f): IR
(film) 1715, 1430, 1295, 1260, 1122, 1070, 809, 749 cm™}; NMR
(CDCl,) 6 1.5-2.1 (m, 8 H, CH,), 4.67 (s, 2 H, CHO), 5.81 (br s,
1 H, =CH), 7.2-8.1 (m, 4 H, phenyl).

2-[(3-Chlorobenzoyl)oxy]-1-methylenecyclopentane (3e):
NMR (CDCly) 6 1.5-2.7 (m, 6 H, CH,), 5.14 (s, 1 H,=CH), 5.25
(s, 1 H, =CH), 5.66 (m, 1 H, CHO), 7.3-8.1 (m, 4 H, phenyl).

1-[[(3-Chlorobenzoyl)oxy]methyl]lcyclopentene (3f): NMR
(CDCl,) 6 1.8-2.6 (m, 6 H, CH,), 4.87 (s, 2 H, CHO), 5.72 (br s,
1 H, =CH), 7.3-8.1 (m, 4 H, phenyl).

3-[(3-Chlorobenzoyl)oxy]-2-phenyl-1-butene (4e): IR (film)
1715, 1570, 1420, 1285, 1250, 1135, 1073, 908, 749 cm™’; NMR
(CDCl,) 6 1.48 (d, J = 6.6 Hz, 3 H, CH3), 5.35 (s, 1 H,=CH), 5.41
(s, 1 H,=CH), 6.06 (q, J = 6.6 Hz, 1 H, CHO), 7.2-8.1 (m, 9 H,
phenyl).

1-[(3-Chlorobenzoyl)oxy]-2-phenyl-2-butene (4f): IR (film)
1720, 1570, 1420, 1280, 1250, 1135, 1073, 830, 749 cm™!; NMR
(CDCl,) 6 1.67 (d, J = 7 Hz, 3 H, CHjy), 5.00 (s, 2 H, CHO), 5.98
(g, J = 7 Hz, 1 H,=CH), 7.2-8.1 (m, 9 H, phenyl).

3-[(3-Chlorobenzoyl)oxy]-2-propyl-1-pentene (5¢): IR (film)
1740, 1590, 1440, 1305, 1255, 1122 1070, 898, 749 cm™'; NMR
(CDCly) 6 0.8-2.2 (m, 12 H, CH; and CH,), 4.95 (s, 1 H, =CH),
5.08 (s, 1 H, =CH), 5.38 (t, J = 6 Hz, CHO), 7.3-8.1 (m, 4 H,
phenyl).

4-[[(8-Chlorobenzoyl)oxy]methyl]-3-heptene (5f): IR (film)
1730, 1585, 1440, 1305, 1250, 1125, 1070, 808, 750 cm™'; NMR
(CDCl,) 6 0.8-2.3 (m, 12 H, CH; and CH,), 4.73 (s, 2 H, CHO),
557 (t,J = 7 Hz, 1 H, =CH), 7.3-8.1 (m, 4 H, phenyl).
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The naturally occurring dipeptide L-carnosine!? (3-ala-

nyl-L-histidine), 3, is a substance of considerable biological
and therapeutic importance. Recent studies® suggest that

(1) “The Merck Index”, 9th ed.; Merck and Co.: Rahway, NJ, 1976;
p 236. L-Carnosine is found in the brain and muscles of man and nu-
merous animals.

(2) For a review article on the skeletal muscle dipeptides L-carnosine
and L-anserine, see: Meshkova, N. P. Usp. Biol. Khim. 1964, 6, 86.
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this material is an olfactory neurotransmitter. In addition,
L-carnosine possesses the remarkable property of accel-
erating wound healing,* particularly when used following
oral surgical procedures.

Previous syntheses of 3% have, in general, required many
steps and/or have afforded low overall yields of the final
product. We now report a simple, short, high-yield prep-
aration of 3 via the aqueous coupling of L-histidine and
the N-(thiocarboxy) anhydride (NTA) of $-alanine, 2.57
This approach relies upon a new method for isolating
water-soluble peptides from salt-containing aqueous re-
action mixtures.

NTA'’s of amino acids have not enjoyed extensive uti-
lization in peptide synthesis, principally because of their
tendency to suffer some degree of racemization in the
coupling process.® However, §-alanine, a material without

(3) (a) Margolis, F. L. Science (Washington, D.C.) 1974 184, 909. (b)
Margolis, F. L.; Ferriero, D.; Harding, J. Proc. Int. Congr. Pharmacol.,
6th 1976, 2, 61. (c) Brown, C. E.; Margolis, F. L.; Williams, T. H.; Pitcher,
R. G.; Elgar, G. Neurochem. Res. 1977, 2, 555. (d) Wideman, J.; Brink,
L.; Stein, S. Anal. Biochem. 1978, 86, 670. (e) Brown, C. E.; Margolis,
F. L.; Williams, T. H.; Pitcher, R. G.; and Elgar, G. Arch. Biochem.
Biophys. 1979, 193, 529.

(4) (a) Fisher, D. E.; Amend, J. F.; Strumeyer, D. H.; Fisher, H. Proc.
Soc. Exp. Biol. Med. 1978, 158, 402. (b) Nagai, K.; Yamane, T. Hetero-
cycles 1978, 10, 277. (c) Nagai, K.; Kodaira, H.; Kabutake, H.; Takano,
H.; Oki, T. J. Nihon Univ. Sch. Dent. 1974, 186, 29.

(5) (a) Baumann, L.; Ingvaldsen, T. J. Biol. Chem. 1918, 35, 263. (b)
Sifferd, R.; du Vigneaud, V. Ibid. 1935, 108, 7563. (c) Turner, R. A. J. Am.
Chem. Soc. 1953, 75, 2388. (d) Davis, N. C.; Smith, E. L. Biochem. Prep.
1955, 4, 38. (e) Losse, G.; Miiller, G. Chem. Ber. 1961, 94, 2768, (f)
Rinderknecht, H.; Rebane, T.; Ma, V. J. Org. Chem, 1964, 29, 1968. (g)
Glemzha, A. A.; Severin, S. E. Izv. Akad, Nauk SSR, Ser. Khim. 1966,
861. (h) Pinelli, C.; Portelli, M.; Fioretti, M. I1 Farmico Ed. Sci. 1968,
23, 859.

(6) Dewey, T. S.; Schoenewaldt, E. F.; Joshua, H.; Paleveda, W. J., Jr.;
Schwam, H.; Barkemeyer, H.; Arison, B. H.; Veber, D. F.; Strachan, R.
G.; Milkowski, J.; Denkewalter, R. G.; Hirschmann, R. J. Org. Chem.
1971, 36, 49. This paper provides an elegant and definitive account of
the use of a-amino acid NTA's in peptide synthesis.

(7) Kricheldorf, H. Chem. Ber. 1971, 104, 3146. Kricheldorf has pre-
pared B-alanine NTA by the reaction of N-(methoxythiocarbonyl) §-
alanine trimethylsilyl ester with PBr;:
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The use of this NTA in a peptide coupling reaction has not been reported.
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intrinsic optical activity, is not vulnerable to possible
racemization and is a priori an attractive substrate for an
NTA-based coupling reaction.

The synthetic sequence employed is depicted in Scheme
L

Treatment of 8-alanine with methyl ethylxanthate (1.05
equiv) at 45 °C for 1 h in aqueous sodium hydroxide (1
equiv)/methanol afforded a 91% yield of thionourethane
derivative 1 (mp 72-74 °C), Compound 1 was readily
cyclized to NTA 278 with PBr; (0.5 mol, 1.5 equiv) in ethyl
acetate (25 °C, 15 min; brine quench). The yield of ana-
lytically pure material was 72% [mp 88-90 °C dec (lit.”
mp 90-92 °C dec)]. The key coupling reaction was carried
out by adding 2 to an aqueous solution of L-histidine under
conditions of carefully controlled pH (see Experimental
Section for specific details). A reaction of this type can
be quite impractical when the resulting product is very
water soluble. The necessary pH manipulations (addition
of aqueous NaOH solution during the reaction and sub-
sequent acidification with 12 N HCI) generate substantial
quantities of sodium chloride. In our initial studies we
found that it was virtually impossible to isolate L-carnosine
that was not contaminated with varying amounts of salt.
The crude, salt-containing dipeptide was difficult to purify
by recrystallization; such efforts inevitably resulted in
seriously diminished yields. To solve this problem, we used
tetraethylammonium hydroxide and formic acid in place
of NaOH and HCl. Tetraethylammonium formate, ob-
tained as the side product, is soluble in ethanol and can
easily be separated from the desired L-carnosine as follows:
Water is evaporated from the reaction mixture and re-
placed with ethanol. The Et,NTHCOQ, dissolves, and
L-carnosine slowly crystallizes from solution. This meth-
odology may be of general utility in the isolation of
water-soluble peptides when isoelectric point pH adjust-
ments must be made. Using this technique, we isolated
a 79% yield of crude L-carnosine which was readily purified
by recrystallization.

The above route to 3 is not only a highly efficient
preparation of this interesting compound but also serves
to illustrate the potential value of NTA’s in peptide syn-
thesis. Further studies are in progress.

Experimental Section

General Procedures. Melting points were determined with
a Thomas-Hoover capillary apparatus and are uncorrected. In-
frared spectra were recorded with a Perkin-Elmer Model 21
spectrophotometer. NMR spectra were obtained with a Varian
XL-100 or EM 360L spectrometer with Me,Si as an internal
standard. Optical rotations were determined with a Perkin-Elmer
141 polarimeter. Microanalyses were performed by the Pfizer
Analytical Department.

L-Carnosine (3). L-Histidine (6.2 g, 40 mmol) was stirred as
a suspension at 0~5 °C in 60 mL of water. The pH was adjusted
to 9.2 with 20% aqueous tetraethylammonium hydroxide, and
2 (10.5 g, 80 mmol) was added portionwise with vigorous stirring.
Tetraethylammonium hydroxide was added as needed to maintain
pH 8.7-9.2. After completion of the NTA addition, the mixture
was stirred until the pH stabilized at 9.2 (1 h) and then acidified
with 98% formic acid to pH 4.0-4.5.° The pH was adjusted to
8.2 {L-carnosine isoelectric pH) with tetraethylammonium hy-
droxide and the water evaporated in vacuo. The yellowish, gummy
residue was stirred in 600 mL of absolute ethanol; fine white
crystals formed, with were collected by filtration, washed with
ethanol and then ether, and dried. The isolated yield of L-car-
nosine was 7.20 g (79%).

(8) The NTA can be stored at 0 °C for indefinite periods of time; at
25 °C slow decomposition is observed.

(9) At pH 4.0-4.5 the protecting/activating group is released as COS
gas.

A sample of material was recrystallized from aqueous ethanol
to give analytically pure 3: mp 262 °C dec (lit.> mp 260 °C dec);
[«]%p +21.0° (¢ 1.5, H,0) [lit.® [a]%p +20.5° (¢ 2, H,0)); IR (KBr)
3174, 1639, 1575, 1563 cm™; 'H NMR (D,0) 6 2.64 (t,2 H, J =
6 Hz), 3.04 (AB of ABX, 2 H, J,g =16 Hz),3.20 (t,2H,J =6
Hz), 4.44 (X of ABX, 1 H, J,x + Jpx = 14 Hz), 6.94 (s, 1 H), 7.70
(s, 1 H).

Anal. Calced for CgH, N,Os: C, 47.78; H, 6.24; N, 24.76. Found:
C, 47.32; H, 5.82; N, 24.55.

Registry No. 1, 84040-82-4; 2, 34653-21-9; 3, 305-84-0; L-
histidine, 71-00-1; §8-alanine, 107-95-9; methyl ethylxanthate,
623-54-1.
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Fluorinated carbohydrates have been widely utilized in
biochemical investigations (enzyme-carbohydrate inter-
actions, etc.).!® However, the synthesis of fluorinated
sugars is both tedious and time consuming because of the
requisite protection and deprotection steps.*® As part of
a program concerned with the synthesis of modified car-
bohydrates, we became interested in facile syntheses of
fluorinated derivatives. In particular, we hope to syn-
thesize specifically fluorinated carbohydrates, from un-
protected or only partially protected substrates, by use of
(diethylamino)sulfur trifluoride (DAST).® The simple and
selective fluorination of methyl a-D-glucopyranoside
presented here is an initial demonstration of this specif-
icity. In addition, we also report preparations of methyl
4,6-dideoxy-4,6-difluoro-a-D-talopyranoside and methyl
2,3,6-tri-O-benzoyl-4-deoxy-4-fluoro-a-D-glucopyranoside.

Somawardhana and Brunngraber’ recently reported that
methyl a-D-glucopyranoside (1) reacts with neat DAST to

F
CH2QH CHaF CHoF
HO 0 HO 0 HO
HO HO 9
HO HO HO
OCH3z OCH3z OCHz
1 2 3

afford methyl 4,6-dideoxy-4,6-difluoro-a-galactopyranoside
(2) in 60% yield. Sidhu® has also reported a similar ob-
servation. In contrast to these reports, we have found that
treatment of a suspension of 1 in dichloromethane with
6 equiv of DAST, initially at —30 °C and then 1 h at room
temperature, gave the monofluorinated product methyl
6-deoxy-6-fluoro-a-D-glucopyranoside® (3) in 70-88% yield
(see Experimental Section). Only a trace of 2 was detected
by thin-layer chromatography and use of longer reaction
times did not significantly affect the yields of 2 or 3.
However, when added to neat DAST, 3 was cleanly con-
verted into the difluoro derivative 2. Compound 2 was
identical in all respects with material prepared as previ-
ously reported.” Thus, use of dichloromethane as a reac-
tion solvent instead of neat DAST allows for the selective
monofluorination of 1.

tContribution no. 3097.
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